U
    ;qLe                     @   s  d dl mZ d dlmZmZmZmZmZm	Z	m
Z
 d dlmZ d dlmZ d dlmZmZmZmZmZ d dlmZmZ d dlmZmZmZ d dlmZ d d	lmZ d d
l m!Z! d dl"m#Z# G dd deZ$G dd deZ%G dd deZ&G dd deZ'G dd deZ(G dd deZ)G dd deZ*G dd deZ+G dd deZ,G dd deZ-d d! Z.G d"d# d#eZ/d/d%d&Z0d0d(d)Z1d1d*d+Z2d2d-d.Z3d,S )3    )Tuple)SAddMulsympifySymbolDummyBasic)Expr)factor_terms)Function
DerivativeArgumentIndexErrorAppliedUndef
expand_mul)	fuzzy_notfuzzy_or)piIoo)Pow)Eq)sqrt)	Piecewisec                   @   sp   e Zd ZU dZee ed< dZdZdZ	e
dd ZdddZdd	 Zd
d Zdd Zdd Zdd Zdd ZdS )rea  
    Returns real part of expression. This function performs only
    elementary analysis and so it will fail to decompose properly
    more complicated expressions. If completely simplified result
    is needed then use ``Basic.as_real_imag()`` or perform complex
    expansion on instance of this function.

    Examples
    ========

    >>> from sympy import re, im, I, E, symbols
    >>> x, y = symbols('x y', real=True)
    >>> re(2*E)
    2*E
    >>> re(2*I + 17)
    17
    >>> re(2*I)
    0
    >>> re(im(x) + x*I + 2)
    2
    >>> re(5 + I + 2)
    7

    Parameters
    ==========

    arg : Expr
        Real or complex expression.

    Returns
    =======

    expr : Expr
        Real part of expression.

    See Also
    ========

    im
    argsTc                 C   sD  |t jkrt jS |t jkr t jS |jr*|S |js:t| jr@t jS |jrR| d S |j	rpt
|trpt|jd S g g g   }}}t|}|D ]p}|t}|d k	r|js|| q|ts|jr|| q|j|d}| r||d  q|| qt|t|kr@dd |||fD \}	}
}| |	t|
 | S d S )Nr   ignorec                 s   s   | ]}t | V  qd S Nr   .0xs r#   {/home/p21-0144/sympy/latex2sympy2solve-back-end/sympyEq/lib/python3.8/site-packages/sympy/functions/elementary/complexes.py	<genexpr>i   s     zre.eval.<locals>.<genexpr>)r   NaNComplexInfinityis_extended_realis_imaginaryr   Zero	is_Matrixas_real_imagis_Function
isinstance	conjugater   r   r   	make_argsas_coefficientappendhaslenimclsargincludedZrevertedexcludedr   termcoeff	real_imagabcr#   r#   r$   evalD   s8    



zre.evalc                 K   s
   | t jfS )zF
        Returns the real number with a zero imaginary part.

        r   r*   selfdeephintsr#   r#   r$   r,   m   s    zre.as_real_imagc                 C   s^   |j s| jd j r*tt| jd |ddS |js<| jd jrZt tt| jd |dd S d S Nr   Tevaluate)r(   r   r   r   r)   r   r5   rD   xr#   r#   r$   _eval_derivativet   s    zre._eval_derivativec                 K   s   | j d tt| j d   S Nr   )r   r   r5   rD   r8   kwargsr#   r#   r$   _eval_rewrite_as_im{   s    zre._eval_rewrite_as_imc                 C   s   | j d jS rM   r   is_algebraicrD   r#   r#   r$   _eval_is_algebraic~   s    zre._eval_is_algebraicc                 C   s   t | jd j| jd jgS rM   )r   r   r)   is_zerorS   r#   r#   r$   _eval_is_zero   s    zre._eval_is_zeroc                 C   s   | j d jrdS d S Nr   Tr   	is_finiterS   r#   r#   r$   _eval_is_finite   s    zre._eval_is_finitec                 C   s   | j d jrdS d S rW   rX   rS   r#   r#   r$   _eval_is_complex   s    zre._eval_is_complexN)T)__name__
__module____qualname____doc__tTupler
   __annotations__r(   
unbranched_singularitiesclassmethodrA   r,   rL   rP   rT   rV   rZ   r[   r#   r#   r#   r$   r      s   
)
(
r   c                   @   sp   e Zd ZU dZee ed< dZdZdZ	e
dd ZdddZdd	 Zd
d Zdd Zdd Zdd Zdd ZdS )r5   a  
    Returns imaginary part of expression. This function performs only
    elementary analysis and so it will fail to decompose properly more
    complicated expressions. If completely simplified result is needed then
    use ``Basic.as_real_imag()`` or perform complex expansion on instance of
    this function.

    Examples
    ========

    >>> from sympy import re, im, E, I
    >>> from sympy.abc import x, y
    >>> im(2*E)
    0
    >>> im(2*I + 17)
    2
    >>> im(x*I)
    re(x)
    >>> im(re(x) + y)
    im(y)
    >>> im(2 + 3*I)
    3

    Parameters
    ==========

    arg : Expr
        Real or complex expression.

    Returns
    =======

    expr : Expr
        Imaginary part of expression.

    See Also
    ========

    re
    r   Tc                 C   sL  |t jkrt jS |t jkr t jS |jr,t jS |js<t| jrFt | S |jrX| d S |j	rxt
|trxt|jd  S g g g   }}}t|}|D ]p}|t}|d k	r|js|| n
|| q|ts|js|j|d}| r||d  q|| qt|t|krHdd |||fD \}	}
}| |	t|
 | S d S )N   r   r   c                 s   s   | ]}t | V  qd S r   r   r    r#   r#   r$   r%      s     zim.eval.<locals>.<genexpr>)r   r&   r'   r(   r*   r)   r   r+   r,   r-   r.   r/   r5   r   r   r0   r1   r2   r3   r4   r   r6   r#   r#   r$   rA      s8    




zim.evalc                 K   s
   | t jfS )zC
        Return the imaginary part with a zero real part.

        rB   rC   r#   r#   r$   r,      s    zim.as_real_imagc                 C   s^   |j s| jd j r*tt| jd |ddS |js<| jd jrZt tt| jd |dd S d S rG   )r(   r   r5   r   r)   r   r   rJ   r#   r#   r$   rL      s    zim._eval_derivativec                 K   s   t  | jd t| jd   S rM   )r   r   r   rN   r#   r#   r$   _eval_rewrite_as_re   s    zim._eval_rewrite_as_rec                 C   s   | j d jS rM   rQ   rS   r#   r#   r$   rT      s    zim._eval_is_algebraicc                 C   s   | j d jS rM   r   r(   rS   r#   r#   r$   rV      s    zim._eval_is_zeroc                 C   s   | j d jrdS d S rW   rX   rS   r#   r#   r$   rZ      s    zim._eval_is_finitec                 C   s   | j d jrdS d S rW   rX   rS   r#   r#   r$   r[     s    zim._eval_is_complexN)T)r\   r]   r^   r_   r`   r
   ra   r(   rb   rc   rd   rA   r,   rL   rf   rT   rV   rZ   r[   r#   r#   r#   r$   r5      s   
)
'
r5   c                       s   e Zd ZdZdZdZ fddZedd Zdd Z	d	d
 Z
dd Zdd Zdd Zdd Zdd Zdd Zdd Zd$ddZdd Zdd Zd d! Zd"d# Z  ZS )%signa  
    Returns the complex sign of an expression:

    Explanation
    ===========

    If the expression is real the sign will be:

        * $1$ if expression is positive
        * $0$ if expression is equal to zero
        * $-1$ if expression is negative

    If the expression is imaginary the sign will be:

        * $I$ if im(expression) is positive
        * $-I$ if im(expression) is negative

    Otherwise an unevaluated expression will be returned. When evaluated, the
    result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``.

    Examples
    ========

    >>> from sympy import sign, I

    >>> sign(-1)
    -1
    >>> sign(0)
    0
    >>> sign(-3*I)
    -I
    >>> sign(1 + I)
    sign(1 + I)
    >>> _.evalf()
    0.707106781186548 + 0.707106781186548*I

    Parameters
    ==========

    arg : Expr
        Real or imaginary expression.

    Returns
    =======

    expr : Expr
        Complex sign of expression.

    See Also
    ========

    Abs, conjugate
    Tc                    s>   t   }|| kr:| jd jdkr:| jd t| jd  S |S )Nr   F)superdoitr   rU   Abs)rD   rF   s	__class__r#   r$   rj   C  s    
z	sign.doitc           	      C   s@  |j r| \}}g }t|}|D ]Z}|jr4| }q"|jr<q"|jrrt|}|jrf|t9 }|jrp| }q||	| q"|	| q"|t
jkrt|t|krd S || |j|  S |t
jkrt
jS |jrt
jS |jrt
jS |jrt
jS |jrt|tr|S |jr<|jr|jt
jkrtS t | }|jr.tS |jr<t S d S r   )is_Mulas_coeff_mulrh   is_extended_negativeis_extended_positiver)   r5   is_comparabler   r2   r   Oner4   _new_rawargsr&   rU   r*   NegativeOner-   r.   is_PowexpHalf)	r7   r8   r@   r   unkrl   r>   aiarg2r#   r#   r$   rA   I  sN    


z	sign.evalc                 C   s   t | jd jrtjS d S rM   )r   r   rU   r   rt   rS   r#   r#   r$   	_eval_Abs{  s    zsign._eval_Absc                 C   s   t t| jd S rM   )rh   r/   r   rS   r#   r#   r$   _eval_conjugate  s    zsign._eval_conjugatec                 C   s   | j d jr>ddlm} dt| j d |dd || j d  S | j d jrddlm} dt| j d |dd |t | j d   S d S )Nr   )
DiracDelta   TrH   )r   r(   'sympy.functions.special.delta_functionsr   r   r)   r   )rD   rK   r   r#   r#   r$   rL     s    zsign._eval_derivativec                 C   s   | j d jrdS d S rW   )r   is_nonnegativerS   r#   r#   r$   _eval_is_nonnegative  s    zsign._eval_is_nonnegativec                 C   s   | j d jrdS d S rW   )r   is_nonpositiverS   r#   r#   r$   _eval_is_nonpositive  s    zsign._eval_is_nonpositivec                 C   s   | j d jS rM   )r   r)   rS   r#   r#   r$   _eval_is_imaginary  s    zsign._eval_is_imaginaryc                 C   s   | j d jS rM   rg   rS   r#   r#   r$   _eval_is_integer  s    zsign._eval_is_integerc                 C   s   | j d jS rM   )r   rU   rS   r#   r#   r$   rV     s    zsign._eval_is_zeroc                 C   s&   t | jd jr"|jr"|jr"tjS d S rM   )r   r   rU   
is_integeris_evenr   rt   )rD   otherr#   r#   r$   _eval_power  s    zsign._eval_powerr   c                 C   sV   | j d }||d}|dkr(| |S |dkr<|||}t|dk rPtj S tjS rM   )r   subsfuncdirr   r   rt   )rD   rK   nlogxcdirarg0x0r#   r#   r$   _eval_nseries  s    

zsign._eval_nseriesc                 K   s&   |j r"td|dkfd|dk fdS d S )Nre   r   )r   T)r(   r   rN   r#   r#   r$   _eval_rewrite_as_Piecewise  s    zsign._eval_rewrite_as_Piecewisec                 K   s&   ddl m} |jr"||d d S d S )Nr   	Heavisider   re   r   r   r(   rD   r8   rO   r   r#   r#   r$   _eval_rewrite_as_Heaviside  s    zsign._eval_rewrite_as_Heavisidec                 K   s    t dt|df|t| dfS rW   )r   r   rk   rN   r#   r#   r$   _eval_rewrite_as_Abs  s    zsign._eval_rewrite_as_Absc                 K   s   |  t| jd S rM   )r   r   r   )rD   rO   r#   r#   r$   _eval_simplify  s    zsign._eval_simplify)r   )r\   r]   r^   r_   
is_complexrc   rj   rd   rA   r}   r~   rL   r   r   r   r   rV   r   r   r   r   r   r   __classcell__r#   r#   rm   r$   rh   	  s(   6
1

	rh   c                   @   s   e Zd ZU dZee ed< dZdZdZ	dZ
dZd,ddZedd	 Zd
d Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zdd Zd-dd Zd!d" Zd#d$ Zd%d& Zd'd( Zd)d* Zd+S ).rk   ab  
    Return the absolute value of the argument.

    Explanation
    ===========

    This is an extension of the built-in function ``abs()`` to accept symbolic
    values.  If you pass a SymPy expression to the built-in ``abs()``, it will
    pass it automatically to ``Abs()``.

    Examples
    ========

    >>> from sympy import Abs, Symbol, S, I
    >>> Abs(-1)
    1
    >>> x = Symbol('x', real=True)
    >>> Abs(-x)
    Abs(x)
    >>> Abs(x**2)
    x**2
    >>> abs(-x) # The Python built-in
    Abs(x)
    >>> Abs(3*x + 2*I)
    sqrt(9*x**2 + 4)
    >>> Abs(8*I)
    8

    Note that the Python built-in will return either an Expr or int depending on
    the argument::

        >>> type(abs(-1))
        <... 'int'>
        >>> type(abs(S.NegativeOne))
        <class 'sympy.core.numbers.One'>

    Abs will always return a SymPy object.

    Parameters
    ==========

    arg : Expr
        Real or complex expression.

    Returns
    =======

    expr : Expr
        Absolute value returned can be an expression or integer depending on
        input arg.

    See Also
    ========

    sign, conjugate
    r   TFre   c                 C   s$   |dkrt | jd S t| |dS )zE
        Get the first derivative of the argument to Abs().

        re   r   N)rh   r   r   )rD   argindexr#   r#   r$   fdiff   s    z	Abs.fdiffc                    s  ddl m} t dr*  }|d k	r*|S t tsDtdt  | dd   \}}|j	rx|j	sx| || | S  j
r2g }g } jD ]v}|jr|jjr|jjr| |j}	t|	| r|| n|t|	|j q| |}
t|
| r|| q||
 qt| }|r$| t| ddntj}|| S  tjkrDtjS  tjkrTtS ddlm}m}  jr*  \}}|jr|jr|jr S |tjkrtjS t|| S |j r|t!| S |j"r| t!| |t# t$|  S d S |%t&s*||' \}}|t(|  }|t!|| S t |rH|t! jd S t t)rr j*r` S  jrn  S d S  j+r %ttj,rt-dd	  ' D rtS  j.rtj/S  j r S  j0rΈ  S  j1rt(   }|j r|S  jrd S | 2 dd3t2 3t2 }|r>t4 fd
d	|D r>d S  kr  kr 3t} 5dd |D }dd |j	D }|rt4fdd	|D st6t7  S d S )Nr   )signsimpr}   zBad argument type for Abs(): %sFrH   )rx   logc                 s   s   | ]}|j V  qd S r   )is_infiniter!   r>   r#   r#   r$   r%   P  s     zAbs.eval.<locals>.<genexpr>c                 3   s   | ]}  |jd  V  qdS )r   N)r3   r   r!   ir8   r#   r$   r%   b  s     c                 S   s   i | ]}|t d dqS )T)real)r   r   r#   r#   r$   
<dictcomp>f  s      zAbs.eval.<locals>.<dictcomp>c                 S   s   g | ]}|j d kr|qS r   )r(   r   r#   r#   r$   
<listcomp>g  s     
 zAbs.eval.<locals>.<listcomp>c                 3   s   | ]}  t|V  qd S r   )r3   r/   )r!   u)conjr#   r$   r%   h  s     )8sympy.simplify.simplifyr   hasattrr}   r.   r
   	TypeErrortypeas_numer_denomfree_symbolsro   r   rw   rx   r   is_negativebaser2   r   r   r   rt   r&   r'   r   &sympy.functions.elementary.exponentialr   as_base_expr(   r   rv   rk   is_extended_nonnegativer   rq   r   r5   r3   r   r,   r   r   is_positiveis_AddNegativeInfinityanyrU   r*   is_extended_nonpositiver)   r/   atomsallxreplacer   r   )r7   r8   r   objr   dknownrz   tZbnewtnewrx   r   r   exponentr>   r?   zr|   Znew_conjr   Zabs_free_argr#   )r8   r   r$   rA   
  s    





 

zAbs.evalc                 C   s   | j d jrdS d S rW   rX   rS   r#   r#   r$   _eval_is_realk  s    zAbs._eval_is_realc                 C   s   | j d jr| j d jS d S rM   )r   r(   r   rS   r#   r#   r$   r   o  s    zAbs._eval_is_integerc                 C   s   t | jd jS rM   r   _argsrU   rS   r#   r#   r$   _eval_is_extended_nonzeros  s    zAbs._eval_is_extended_nonzeroc                 C   s   | j d jS rM   )r   rU   rS   r#   r#   r$   rV   v  s    zAbs._eval_is_zeroc                 C   s   t | jd jS rM   r   rS   r#   r#   r$   _eval_is_extended_positivey  s    zAbs._eval_is_extended_positivec                 C   s   | j d jr| j d jS d S rM   )r   r(   is_rationalrS   r#   r#   r$   _eval_is_rational|  s    zAbs._eval_is_rationalc                 C   s   | j d jr| j d jS d S rM   )r   r(   r   rS   r#   r#   r$   _eval_is_even  s    zAbs._eval_is_evenc                 C   s   | j d jr| j d jS d S rM   )r   r(   is_oddrS   r#   r#   r$   _eval_is_odd  s    zAbs._eval_is_oddc                 C   s   | j d jS rM   rQ   rS   r#   r#   r$   rT     s    zAbs._eval_is_algebraicc                 C   sP   | j d jrL|jrL|jr&| j d | S |tjk	rL|jrL| j d |d  |  S d S )Nr   re   )r   r(   r   r   r   rv   
is_Integer)rD   r   r#   r#   r$   r     s    zAbs._eval_powerr   c                 C   sd   ddl m} | jd |d }|||r>||||}| jd j|||d}t||  S )Nr   )r   )r   r   )	r   r   r   leadtermr3   r   r   rh   expand)rD   rK   r   r   r   r   	directionrl   r#   r#   r$   r     s    zAbs._eval_nseriesc                 C   s   | j d js| j d jr>t| j d |ddtt| j d  S t| j d tt| j d |dd t| j d tt| j d |dd  t| j d  }|	tS rG   )
r   r(   r)   r   rh   r/   r   r5   rk   rewrite)rD   rK   rvr#   r#   r$   rL     s     zAbs._eval_derivativec                 K   s,   ddl m} |jr(|||||   S d S )Nr   r   r   r   r#   r#   r$   r     s    zAbs._eval_rewrite_as_Heavisidec                 K   sL   |j rt||dkf| dfS |jrHtt| t| dkft | dfS d S rW   )r(   r   r)   r   rN   r#   r#   r$   r     s    zAbs._eval_rewrite_as_Piecewisec                 K   s   |t | S r   rh   rN   r#   r#   r$   _eval_rewrite_as_sign  s    zAbs._eval_rewrite_as_signc                 K   s   t |t| S r   )r   r/   rN   r#   r#   r$   _eval_rewrite_as_conjugate  s    zAbs._eval_rewrite_as_conjugateN)re   )r   )r\   r]   r^   r_   r`   r
   ra   r(   rq   r   rb   rc   r   rd   rA   r   r   r   rV   r   r   r   r   rT   r   r   rL   r   r   r   r   r#   r#   r#   r$   rk     s4   
9


`
	rk   c                   @   s<   e Zd ZdZdZdZdZdZedd Z	dd Z
dd Zd	S )
r8   a  
    Returns the argument (in radians) of a complex number. The argument is
    evaluated in consistent convention with ``atan2`` where the branch-cut is
    taken along the negative real axis and ``arg(z)`` is in the interval
    $(-\pi,\pi]$. For a positive number, the argument is always 0; the
    argument of a negative number is $\pi$; and the argument of 0
    is undefined and returns ``nan``. So the ``arg`` function will never nest
    greater than 3 levels since at the 4th application, the result must be
    nan; for a real number, nan is returned on the 3rd application.

    Examples
    ========

    >>> from sympy import arg, I, sqrt, Dummy
    >>> from sympy.abc import x
    >>> arg(2.0)
    0
    >>> arg(I)
    pi/2
    >>> arg(sqrt(2) + I*sqrt(2))
    pi/4
    >>> arg(sqrt(3)/2 + I/2)
    pi/6
    >>> arg(4 + 3*I)
    atan(3/4)
    >>> arg(0.8 + 0.6*I)
    0.643501108793284
    >>> arg(arg(arg(arg(x))))
    nan
    >>> real = Dummy(real=True)
    >>> arg(arg(arg(real)))
    nan

    Parameters
    ==========

    arg : Expr
        Real or complex expression.

    Returns
    =======

    value : Expr
        Returns arc tangent of arg measured in radians.

    Tc                 C   s  |}t dD ]6}t|| r&|jd }q|dkr>|jr>tj  S  qJqtjS ddlm} t||rjt|t	S |j
st| \}}|jrtdd |jD  }t|| }n|}tdd |tD rd S dd	lm} | \}}	||	|}
|
jr|
S ||kr
| |d
dS d S )N   r   r   	exp_polarc                 S   s$   g | ]}t |d kr|nt |qS ))r   re   r   r   r#   r#   r$   r     s   zarg.eval.<locals>.<listcomp>c                 s   s   | ]}|j d kV  qd S r   )rr   r   r#   r#   r$   r%     s     zarg.eval.<locals>.<genexpr>atan2FrH   )ranger.   r   r(   r   r&   r   r   periodic_argumentr   is_Atomr   as_coeff_Mulro   r   rh   r   r   r   (sympy.functions.elementary.trigonometricr   r,   	is_number)r7   r8   r>   r   r   r@   arg_r   rK   yr   r#   r#   r$   rA     s8    





zarg.evalc                 C   sF   | j d  \}}|t||dd |t||dd  |d |d   S )Nr   TrH   r   )r   r,   r   )rD   r   rK   r   r#   r#   r$   rL     s    zarg._eval_derivativec                 K   s(   ddl m} | jd  \}}|||S )Nr   r   )r   r   r   r,   )rD   r8   rO   r   rK   r   r#   r#   r$   _eval_rewrite_as_atan2  s    zarg._eval_rewrite_as_atan2N)r\   r]   r^   r_   r(   is_realrY   rc   rd   rA   rL   r   r#   r#   r#   r$   r8     s   /
 r8   c                   @   sX   e Zd ZdZdZedd Zdd Zdd Zd	d
 Z	dd Z
dd Zdd Zdd ZdS )r/   a>  
    Returns the *complex conjugate* [1]_ of an argument.
    In mathematics, the complex conjugate of a complex number
    is given by changing the sign of the imaginary part.

    Thus, the conjugate of the complex number
    :math:`a + ib` (where $a$ and $b$ are real numbers) is :math:`a - ib`

    Examples
    ========

    >>> from sympy import conjugate, I
    >>> conjugate(2)
    2
    >>> conjugate(I)
    -I
    >>> conjugate(3 + 2*I)
    3 - 2*I
    >>> conjugate(5 - I)
    5 + I

    Parameters
    ==========

    arg : Expr
        Real or complex expression.

    Returns
    =======

    arg : Expr
        Complex conjugate of arg as real, imaginary or mixed expression.

    See Also
    ========

    sign, Abs

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Complex_conjugation
    Tc                 C   s   |  }|d k	r|S d S r   )r~   r7   r8   r   r#   r#   r$   rA   G  s    zconjugate.evalc                 C   s   t S r   )r/   rS   r#   r#   r$   inverseM  s    zconjugate.inversec                 C   s   t | jd ddS rG   rk   r   rS   r#   r#   r$   r}   P  s    zconjugate._eval_Absc                 C   s   t | jd S rM   	transposer   rS   r#   r#   r$   _eval_adjointS  s    zconjugate._eval_adjointc                 C   s
   | j d S rM   r   rS   r#   r#   r$   r~   V  s    zconjugate._eval_conjugatec                 C   sB   |j rtt| jd |ddS |jr>tt| jd |dd S d S rG   )r   r/   r   r   r)   rJ   r#   r#   r$   rL   Y  s    zconjugate._eval_derivativec                 C   s   t | jd S rM   adjointr   rS   r#   r#   r$   _eval_transpose_  s    zconjugate._eval_transposec                 C   s   | j d jS rM   rQ   rS   r#   r#   r$   rT   b  s    zconjugate._eval_is_algebraicN)r\   r]   r^   r_   rc   rd   rA   r   r}   r   r~   rL   r   rT   r#   r#   r#   r$   r/     s   +
r/   c                   @   s4   e Zd ZdZedd Zdd Zdd Zdd	 Zd
S )r   a  
    Linear map transposition.

    Examples
    ========

    >>> from sympy import transpose, Matrix, MatrixSymbol
    >>> A = MatrixSymbol('A', 25, 9)
    >>> transpose(A)
    A.T
    >>> B = MatrixSymbol('B', 9, 22)
    >>> transpose(B)
    B.T
    >>> transpose(A*B)
    B.T*A.T
    >>> M = Matrix([[4, 5], [2, 1], [90, 12]])
    >>> M
    Matrix([
    [ 4,  5],
    [ 2,  1],
    [90, 12]])
    >>> transpose(M)
    Matrix([
    [4, 2, 90],
    [5, 1, 12]])

    Parameters
    ==========

    arg : Matrix
         Matrix or matrix expression to take the transpose of.

    Returns
    =======

    value : Matrix
        Transpose of arg.

    c                 C   s   |  }|d k	r|S d S r   )r   r   r#   r#   r$   rA     s    ztranspose.evalc                 C   s   t | jd S rM   r/   r   rS   r#   r#   r$   r     s    ztranspose._eval_adjointc                 C   s   t | jd S rM   r   rS   r#   r#   r$   r~     s    ztranspose._eval_conjugatec                 C   s
   | j d S rM   r   rS   r#   r#   r$   r     s    ztranspose._eval_transposeN)	r\   r]   r^   r_   rd   rA   r   r~   r   r#   r#   r#   r$   r   f  s   (
r   c                   @   sF   e Zd ZdZedd Zdd Zdd Zdd	 ZdddZ	dd Z
d
S )r   a  
    Conjugate transpose or Hermite conjugation.

    Examples
    ========

    >>> from sympy import adjoint, MatrixSymbol
    >>> A = MatrixSymbol('A', 10, 5)
    >>> adjoint(A)
    Adjoint(A)

    Parameters
    ==========

    arg : Matrix
        Matrix or matrix expression to take the adjoint of.

    Returns
    =======

    value : Matrix
        Represents the conjugate transpose or Hermite
        conjugation of arg.

    c                 C   s0   |  }|d k	r|S | }|d k	r,t|S d S r   )r   r   r/   r   r#   r#   r$   rA     s    zadjoint.evalc                 C   s
   | j d S rM   r   rS   r#   r#   r$   r     s    zadjoint._eval_adjointc                 C   s   t | jd S rM   r   rS   r#   r#   r$   r~     s    zadjoint._eval_conjugatec                 C   s   t | jd S rM   r   rS   r#   r#   r$   r     s    zadjoint._eval_transposeNc                 G   s,   | | jd }d| }|r(d||f }|S )Nr   z%s^{\dagger}z\left(%s\right)^{%s})_printr   )rD   printerrx   r   r8   texr#   r#   r$   _latex  s
    zadjoint._latexc                 G   sF   ddl m} |j| jd f| }|jr6||d }n||d }|S )Nr   )
prettyFormu   †+) sympy.printing.pretty.stringpictr   r   r   _use_unicode)rD   r   r   r   pformr#   r#   r$   _pretty  s    zadjoint._pretty)N)r\   r]   r^   r_   rd   rA   r   r~   r   r   r   r#   r#   r#   r$   r     s   

r   c                   @   s4   e Zd ZdZdZdZedd Zdd Zdd	 Z	d
S )
polar_lifta  
    Lift argument to the Riemann surface of the logarithm, using the
    standard branch.

    Examples
    ========

    >>> from sympy import Symbol, polar_lift, I
    >>> p = Symbol('p', polar=True)
    >>> x = Symbol('x')
    >>> polar_lift(4)
    4*exp_polar(0)
    >>> polar_lift(-4)
    4*exp_polar(I*pi)
    >>> polar_lift(-I)
    exp_polar(-I*pi/2)
    >>> polar_lift(I + 2)
    polar_lift(2 + I)

    >>> polar_lift(4*x)
    4*polar_lift(x)
    >>> polar_lift(4*p)
    4*p

    Parameters
    ==========

    arg : Expr
        Real or complex expression.

    See Also
    ========

    sympy.functions.elementary.exponential.exp_polar
    periodic_argument
    TFc           	      C   s
  ddl m} |jrT||}|dtd t d tfkrTddlm} |t| t| S |jrb|j	}n|g}g }g }g }|D ]2}|j
r||g7 }qx|jr||g7 }qx||g7 }qxt|t|k r|rt||  tt|  S |rt||  S ddlm} t| |d S d S )Nr   r   r   r   )$sympy.functions.elementary.complexesr8   r   r   r   r   r   absro   r   is_polarr   r4   r   r   )	r7   r8   argumentarr   r   r9   r:   positiver#   r#   r$   rA   
  s2    zpolar_lift.evalc                 C   s   | j d |S )z. Careful! any evalf of polar numbers is flaky r   )r   _eval_evalf)rD   precr#   r#   r$   r  .  s    zpolar_lift._eval_evalfc                 C   s   t | jd ddS rG   r   rS   r#   r#   r$   r}   2  s    zpolar_lift._eval_AbsN)
r\   r]   r^   r_   r  rs   rd   rA   r  r}   r#   r#   r#   r$   r     s   %
#r   c                   @   s0   e Zd ZdZedd Zedd Zdd ZdS )	r   a  
    Represent the argument on a quotient of the Riemann surface of the
    logarithm. That is, given a period $P$, always return a value in
    $(-P/2, P/2]$, by using $\exp(PI) = 1$.

    Examples
    ========

    >>> from sympy import exp_polar, periodic_argument
    >>> from sympy import I, pi
    >>> periodic_argument(exp_polar(10*I*pi), 2*pi)
    0
    >>> periodic_argument(exp_polar(5*I*pi), 4*pi)
    pi
    >>> from sympy import exp_polar, periodic_argument
    >>> from sympy import I, pi
    >>> periodic_argument(exp_polar(5*I*pi), 2*pi)
    pi
    >>> periodic_argument(exp_polar(5*I*pi), 3*pi)
    -pi
    >>> periodic_argument(exp_polar(5*I*pi), pi)
    0

    Parameters
    ==========

    ar : Expr
        A polar number.

    period : Expr
        The period $P$.

    See Also
    ========

    sympy.functions.elementary.exponential.exp_polar
    polar_lift : Lift argument to the Riemann surface of the logarithm
    principal_branch
    c           	      C   s   ddl m}m} |jr|j}n|g}d}|D ]}|jsD|t|7 }q,t||rb||j	 d 7 }q,|j
r|j	 \}}||t|j ||t|j  7 }q,t|tr|t|jd 7 }q, d S q,|S )Nr   )r   r   re   )r   r   r   ro   r   r  r8   r.   rx   r,   rw   unbranched_argumentr   r  r   )	r7   r  r   r   r   rb   r>   r   r5   r#   r#   r$   _getunbranched_  s*    

z periodic_argument._getunbranchedc           	      C   s
  |j s
d S |tkr&t|tr&t|j S t|trL|dt krLt|jd |S |jrdd |jD }t	|t	|jkrtt
| |S | |}|d krd S ddlm}m} |t||rd S |tkr|S |tkrddlm} ||| tj | }||s|| S d S )Nr   r   c                 S   s   g | ]}|j s|qS r#   )r   r!   rK   r#   r#   r$   r     s      z*periodic_argument.eval.<locals>.<listcomp>)atanr   ceiling)rr   r   r.   principal_branchr   r   r   r   ro   r4   r   r	  r   r  r   r3   #sympy.functions.elementary.integersr  r   ry   )	r7   r  periodnewargsrb   r  r   r  r   r#   r#   r$   rA   v  s.    


zperiodic_argument.evalc                 C   sn   | j \}}|tkr2t|}|d kr(| S ||S t|t|}ddlm} |||| tj |  |S )Nr   r  )	r   r   r   r	  r  r  r  r   ry   )rD   r  r   r  rb   ubr  r#   r#   r$   r    s    


zperiodic_argument._eval_evalfN)r\   r]   r^   r_   rd   r	  rA   r  r#   r#   r#   r$   r   6  s   (

r   c                 C   s
   t | tS )a\  
    Returns periodic argument of arg with period as infinity.

    Examples
    ========

    >>> from sympy import exp_polar, unbranched_argument
    >>> from sympy import I, pi
    >>> unbranched_argument(exp_polar(15*I*pi))
    15*pi
    >>> unbranched_argument(exp_polar(7*I*pi))
    7*pi

    See also
    ========

    periodic_argument
    )r   r   r   r#   r#   r$   r    s    r  c                   @   s,   e Zd ZdZdZdZedd Zdd ZdS )	r  a  
    Represent a polar number reduced to its principal branch on a quotient
    of the Riemann surface of the logarithm.

    Explanation
    ===========

    This is a function of two arguments. The first argument is a polar
    number `z`, and the second one a positive real number or infinity, `p`.
    The result is ``z mod exp_polar(I*p)``.

    Examples
    ========

    >>> from sympy import exp_polar, principal_branch, oo, I, pi
    >>> from sympy.abc import z
    >>> principal_branch(z, oo)
    z
    >>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
    3*exp_polar(0)
    >>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
    3*principal_branch(z, 2*pi)

    Parameters
    ==========

    x : Expr
        A polar number.

    period : Expr
        Positive real number or infinity.

    See Also
    ========

    sympy.functions.elementary.exponential.exp_polar
    polar_lift : Lift argument to the Riemann surface of the logarithm
    periodic_argument
    TFc                 C   s  ddl m} t|tr&t|jd |S |tkr2|S t|t}t||}||kr|ts|tst|}dd }|	t|}t|t}|ts||kr|t
||  | }n|}|js||s||d9 }|S |js|d }	}
n|j|j \}	}
g }|
D ]"}|jr|	|9 }	n
||g7 } qt|}
t|	|}|trDd S |jrt|	|ksx|dkr|
dkr|	dkr|dkrt|	tt|
 | S t|t
| t|
  |t|	 S |jrt||d k dks||d kr|
dkr||t
 t|	 S d S )	Nr   r   c                 S   s   t | tst| S | S r   )r.   r   r   )exprr#   r#   r$   mr  s    
z!principal_branch.eval.<locals>.mrr#   re   r   T)r   r   r.   r   r  r   r   r   r3   replacer   r  r   rp   r   tupler   r  r  r   )rD   rK   r  r   r  bargplr  resr@   mothersr   r8   r#   r#   r$   rA     s^    







",zprincipal_branch.evalc                 C   sZ   | j \}}t|||}t|tks0|t kr4| S ddlm} t||t|  |S )Nr   )rx   )r   r   r  r  r   r   rx   r   )rD   r  r   r  prx   r#   r#   r$   r    s    
zprincipal_branch._eval_evalfN)	r\   r]   r^   r_   r  rs   rd   rA   r  r#   r#   r#   r$   r    s   (
3r  Fc           
         sh  ddl m} | jr| S | jr(s(t| S t| trBsB rBt| S | jrL| S | jr|| j	 fdd| j
D  } rxt|S |S | jr| jtjkr| 	tjt| j ddS | jr| j	 fdd| j
D  S t| |rHt| j d}g }| j
dd  D ]>}t|d dd	}t|dd   d	}	||f|	   q||ft|  S | j	 fd
d| j
D  S d S )Nr   )Integralc                    s   g | ]}t | d dqS )Tpause	_polarifyr!   r8   liftr#   r$   r   *  s     z_polarify.<locals>.<listcomp>Fr  c                    s   g | ]}t | d dqS )Fr  r   r"  r#  r#   r$   r   1  s     re   r$  r  c                    s(   g | ] }t |tr t| d n|qS )r  )r.   r
   r!  r"  r%  r#   r$   r   <  s    )sympy.integrals.integralsr  r  r   r   r.   r   r   r   r   r   rw   r   r   Exp1r!  rx   r-   functionr2   r  )
eqr$  r  r  rr   limitslimitvarrestr#   r%  r$   r!    s:    
r!  Tc                 C   sN   |rd}t t| |} |s| S dd | jD }| |} | dd | D fS )a  
    Turn all numbers in eq into their polar equivalents (under the standard
    choice of argument).

    Note that no attempt is made to guess a formal convention of adding
    polar numbers, expressions like $1 + x$ will generally not be altered.

    Note also that this function does not promote ``exp(x)`` to ``exp_polar(x)``.

    If ``subs`` is ``True``, all symbols which are not already polar will be
    substituted for polar dummies; in this case the function behaves much
    like :func:`~.posify`.

    If ``lift`` is ``True``, both addition statements and non-polar symbols are
    changed to their ``polar_lift()``ed versions.
    Note that ``lift=True`` implies ``subs=False``.

    Examples
    ========

    >>> from sympy import polarify, sin, I
    >>> from sympy.abc import x, y
    >>> expr = (-x)**y
    >>> expr.expand()
    (-x)**y
    >>> polarify(expr)
    ((_x*exp_polar(I*pi))**_y, {_x: x, _y: y})
    >>> polarify(expr)[0].expand()
    _x**_y*exp_polar(_y*I*pi)
    >>> polarify(x, lift=True)
    polar_lift(x)
    >>> polarify(x*(1+y), lift=True)
    polar_lift(x)*polar_lift(y + 1)

    Adds are treated carefully:

    >>> polarify(1 + sin((1 + I)*x))
    (sin(_x*polar_lift(1 + I)) + 1, {_x: x})
    Fc                 S   s   i | ]}|t |jd dqS )T)polar)r   name)r!   rl   r#   r#   r$   r   m  s      zpolarify.<locals>.<dictcomp>c                 S   s   i | ]\}}||qS r#   r#   )r!   rl   r*  r#   r#   r$   r   o  s      )r!  r   r   r   items)r)  r   r$  repsr#   r#   r$   polarify@  s    (
r3  c                    sX  t | tr| jr| S |sddlm}m} t | |rB|t| j S t | trn| jd dt	 krnt| jd  S | j
s| js| js| jr| jdkrd| jks| jdkr| j fdd| jD  S t | trt| jd  S | jrt| j }t| j |jo|  }|| S | jr>t| jdd	r>| j fd
d| jD  S | j fdd| jD  S )Nr   )rx   r   re   r   )z==z!=c                    s   g | ]}t | qS r#   _unpolarifyr
  exponents_onlyr#   r$   r     s     z_unpolarify.<locals>.<listcomp>rb   Fc                    s   g | ]}t |  qS r#   r4  r
  r6  r#   r$   r     s   c                    s   g | ]}t | d qS )Tr4  r
  r6  r#   r$   r     s     )r.   r	   r   r   rx   r   r5  r  r   r   r   ro   
is_Booleanis_Relationalrel_opr   r   rw   r   r   r-   getattr)r)  r7  r  rx   r   expor   r#   r6  r$   r5  r  sH    

r5  Nc                 C   s   t | tr| S t| } |dk	r,t| |S d}d}|r<d}|rpd}t| ||}|| kr`d}|} t |tr<|S q<ddlm} ||ddtddiS )a  
    If `p` denotes the projection from the Riemann surface of the logarithm to
    the complex line, return a simplified version `eq'` of `eq` such that
    `p(eq') = p(eq)`.
    Also apply the substitution subs in the end. (This is a convenience, since
    ``unpolarify``, in a certain sense, undoes :func:`polarify`.)

    Examples
    ========

    >>> from sympy import unpolarify, polar_lift, sin, I
    >>> unpolarify(polar_lift(I + 2))
    2 + I
    >>> unpolarify(sin(polar_lift(I + 7)))
    sin(7 + I)
    NTFr   r   re   )	r.   boolr   
unpolarifyr   r5  r   r   r   )r)  r   r7  changedr  r  r   r#   r#   r$   r>    s&    

r>  )F)TF)F)NF)4typingr   r`   
sympy.corer   r   r   r   r   r   r	   sympy.core.exprr
   Zsympy.core.exprtoolsr   sympy.core.functionr   r   r   r   r   sympy.core.logicr   r   sympy.core.numbersr   r   r   sympy.core.powerr   sympy.core.relationalr   (sympy.functions.elementary.miscellaneousr   $sympy.functions.elementary.piecewiser   r   r5   rh   rk   r8   r/   r   r   r   r   r  r  r!  r3  r5  r>  r#   r#   r#   r$   <module>   s8   $z{ 6 {aM9BUji
!
2
!